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Background. The rapid advancement of sequencing technologies has made it possible to regularly produce millions of high-quality
reads from the DNA samples in the sequencing laboratories. To this end, the de Bruijn graph is a popular data structure in the
genome assembly literature for efficient representation and processing of data. Due to the number of nodes in a de Bruijn graph,
the main barrier here is the memory and runtime. Therefore, this area has received significant attention in contemporary
literature. Results. In this paper, we present an approach called HaVec that attempts to achieve a balance between the memory
consumption and the running time. HaVec uses a hash table along with an auxiliary vector data structure to store the de Bruijn
graph thereby improving the total memory usage and the running time. A critical and noteworthy feature of HaVec is that it
exhibits no false positive error. Conclusions. In general, the graph construction procedure takes the major share of the time
involved in an assembly process. HaVec can be seen as a significant advancement in this aspect. We anticipate that HaVec will
be extremely useful in the de Bruijn graph-based genome assembly.

1. Background

The rapid advancement of the next-generation sequencing
technologies has made it possible to regularly produce
numerous reads from the DNA samples in the sequencing
laboratories. In particular, the number of reads now is in
the range of hundreds of millions. Hence, the current chal-
lenges include efficient processing of this data which may
reach even a couple hundred GB. To this end, the de Bruijn
graph is a popular data structure in the genome assembly
literature for efficient representation and processing of data.
In a de Bruijn graph, the nodes represent the distinct k-mers
that occur in the reads and there exists an edge between the
two nodes if there is a (k–1)-length overlap between the suffix
and prefix of the corresponding k-mers, respectively. Because
there could be a huge number of nodes in a de Bruijn graph,
the researchers are motivated to focus on devising a compact
representation of this graph. Example of such works includes
but are not limited to [1–8].

The Bloom filter is a popular data structure that can rep-
resent a set and is capable of testing whether a given element

is present or not there. And it can do this efficiently both in
terms of memory and speed. The base data structure of a
Bloom filter consists of an m-bit array, initialized to zero. It
further uses h hash functions. To insert or test the member-
ship of an element, a total of h array positions are computed
using each of the h hash functions. To insert, all correspond-
ing positions in the bit array are set to 1. Similarly, the mem-
bership operation returns yes if and only if all of these bit
positions have 1 (i.e., are set). Note that the Bloom filters
are probabilistic data structures: a negative response to a
membership test for an element ensures that the element is
definitely absent; however, a positive response cannot cer-
tainly indicate the presence of the element in the set. So, even
if a Bloom filter membership test returns true, the element
may not in fact be present in the set. Such a positive response
is referred to as a “false positive.”

Designing lightweight implementations of de Bruijn
graphs has been the focus of attention in recent times. For
example, minimum-information de Bruijn graphs, pioneered
by [3], ensure its lightweight by not recording read locations
and paired-end information. A distributed de Bruijn graph is
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implemented by [4] which reduces the memory usage per
node. On the other hand, Conway and Bromage [5] have
proposed storing an implicit, immutable graph representa-
tion by applying sparse bit array structures. In these
methods, portions of the de Bruijn graph are greedily
extended to compute local assemblies around sequences of
interest, and these methods use negligible memory. Interest-
ingly, Ye et al. [6] proved that a graph roughly equivalent to
the de Bruijn graph can be obtained by storing only one out
of g nodes 10 ≤ g ≤ 25 .

Pell et al. [7] have employed a Bloom filter to devise
the probabilistic de Bruijn graph. Using their method,
the graph encoding can be achieved with as little as 4 bits
per node. However, the inherent limitation of the Bloom
filter is that it can report false positive results in the
introduction of false nodes and false branching in their
approach. Still, it can be shown that the global structure
of the graph can be approximately preserved, up to a
certain false positive rate. Notably, in [7], we do not find
the authors to perform the assembly directly by traversing
the probabilistic graph. Instead, the graph has firstly been
used to partition the set of reads into smaller sets, and
subsequently a classical assembler has been used for
assembly purposes.

Recently, Chikhi and Rizk [8] have again proposed a
Bloom filter based on a new encoding of the de Bruijn graph.
They have introduced an additional structure that is instru-
mental in removing critical false positives. One drawback of
their approach is the use of auxiliary memory, that is, its
strong dependence on the free space in the hard disk. This
in fact can affect the performance of their approach severely.
In particular, this is clearly evident when the number of
unique k-mers in a file skyrockets. For example, when the
number of unique k-mers in a file becomes 2× 109, it takes
more than 10 hours to complete the critical false positive cal-
culation. To summarize, their approach, in addition to the
RAM usage, requires the total free hard disk space to be used
over and over again. This in the end affects the runtime and it
becomes prohibitively high. Another limitation of this
approach is that it cannot handle the situation when the
k-mers are of even length.

According to the present state of the art, memory-
efficient Bloom filter representations of de Bruijn graphs have
two critical issues, namely, the high running time and the
task of false positive computation. On the other hand, other
traditional approaches that do not have these issues need
much higher memory.

In this paper, we make an effort to alleviate these
problems. In particular, we present a new algorithm based
on hashing and auxiliary vector data structures and call
this algorithm HaVec. The key features of HaVec are as
follows which can be seen as the main contributions in
this paper:

(1) HaVec introduces a novel graph construction
approach that has all three desired properties: it is
error free, its running time is low, and it is relatively
memory efficient and hence requires sufficiently
low memory.

(2) It introduces the idea of using a hash table along with
an auxiliary vector data structure to store the k-mers
along with their neighbour information.

(3) It constructs such a graph representation that
generates no false positives. As a result, only true
neighbours are found for traversing the whole graph.

We note that some preliminary results of this
research work were presented at the 17th International
Conference on Computer and Information Technology
(ICCIT 2014) [9].

2. Methods

2.1. General Overview. Let us consider the genome assembly
process when a de Bruijn graph is used. Because of the high
memory requirement, traditional graph representation
approaches do not scale well. This is specially true in case
of large graphs having millions of nodes and edges. A Bloom
filter can offer a memory-efficient alternative. In this option,
edge is not stored explicitly; rather a present bit is used for
every node. The procedure is well known and briefly
described below for completeness. For each node in the
graph, a hash value is produced, which along with the table
size produces an index in the table. The most popular and
easy method to produce this index is to divide the hash value
by the table size to get the remainder. Now, if the node is
present, the corresponding index as calculated above is set
to 1. Similarly, to check the presence (absence) of a node in
the graph, we do the same calculation and simply check
whether the corresponding index is 1 (0). At this point, recall
that a Bloom filter may produce false positives. Hence, if the
corresponding index is 0, then the node is definitely absent;
otherwise, the node is possibly present.

Now the question is how can we compute the edges?
Again, the procedure is simple. Recall that a node corre-
sponds to a k-mer. So, from a node (say x), all possible
neighbours can be easily generated. Now we can easily check
whether a generated possible neighbour (say y) is indeed
present or not in the same way described above. And if y is
absent in the Bloom filter, we can decide that the edge (x, y)
is definitely absent in the graph; otherwise, the edge is
possibly present there.

Now the problem of using the Bloom filter to represent
the graph lies in the probability that more than one node
may generate the same index: when divided by the table size
and hash values of more than one node may produce the
same remainder. So, there is a chance for a false edge to be
created in the graph if a neighbour node is generated falsely;
that is, if the corresponding bit is set due to a different node
generating the same reminder. This is why we may have false
positives when using a Bloom filter.

If the false positives are eliminated, then, the Bloom filter
will undoubtedly be one of the best candidates (if not the
best) to represent a de Bruijn graph. Note that an increase
in the table size of a Bloom filter surely decreases the false
positive rate; however, it will never become zero. In this
paper, we present a crucial observation to tackle this issue:
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even if the same reminder is produced from more than one
node following the abovementioned division operation (i.e.,
hash value / table size ), the quotient for each division
operation must be different. So, if two nodes are pointing to
the same index in the hash table, by examining the respective
quotient values, we can easily verify which one is falsely
generated and which one is indeed the real one. This works
like a fairy tale! However, there is a catch: now, for each index
in the table, we have to keep track of a mapping between hash
values and quotients.

Our approach is quite simple and described below. We
use a total of h different hash functions (say Hi, 1 ≤ i ≤ h).
So for each node, this allows us to produce a total of h hash
values. At first, we make an attempt to store the node using
the index generated by H1. If that fails, that is, if some other
node has already occupied it, we use H2 and so on. However,
it may very well happen that all Hi and 1 ≤ i ≤ h fail to
provide a free index. In that case, being out of options,
we have to resort to our auxiliary vector data structure.
We now use the index value generated by the last hash
function, Hh, to select a position in the vector data struc-
ture. Note that the same problem of multiple index values
pointing to the same position can happen here as well.
This is handled by maintaining a list of indices in that
position. A (second level) vector structure is maintained for
a particular index of that list, where all the collided nodes
on that index are stored. For a detailed description please
refer to Section 2.3.

2.2. de Bruijn Graphs, Hash Tables, and Auxiliary Vector
Structures. As has been mentioned above, HaVec does
not maintain an explicit graph structure; rather, it uses
the k-mer’s information to construct the de Bruijn graph.
And it stores the information of the k-mers using the
hash table and if needed using the auxiliary vector data
structures. Given a k-mer (i.e., a node), HaVec can gen-
erate its correct neighbours simply by examining its
neighbour bits. In what follows, we will describe the proce-
dure in detail.

2.2.1. Hash Table Structure. HaVec uses hashing for faster
access. In the hash table, for each index, HaVec uses 40 bits,
that is, 5 bytes of memory as will be evident shortly (please
see also Table 1).

(1) Because we are working on DNA sequences, each
node (i.e., k-mer) cannot have more than four neigh-
bouring k-mers. To compute a possible neighbour of
a given k-mer, we just need to remove its first symbol
after appending it to one of the four nucleotides.
Now, there are a total of 16 possible ways one
k-mer can have neighbours:

(i) It can have no neighbours (we have only one
possibility).

(ii) Or it can have only one neighbour (we have 4
possibilities).

(iii) Or it can have only 2 neighbours (we have
4
2

= 6 possibilities).

(iv) Or it can have 3 neighbours (we have
4
3

= 4

possibilities).

(v) Or it can have all 4 neighbours (we have only
one possibility).

Hence, HaVec employs 4 bits for this purpose, where a
particular bit corresponds to a particular nucleotide.

(2) HaVec uses 3 bits to keep track of the hash functions
thereby accommodating a maximum of 8 hash func-
tions (in this setting).

(3) The quotient value therefore can be stored in the
remaining 33 bits.

2.2.2. Auxiliary Vector Data Structures. HaVec employs an
auxiliary vector data structure as shown in Figure 1. As can
be seen, there exist three levels of indirection in the vector
data structure. Each entry in the first level keeps a pointer
to a list containing (one or more) hash table indices; this is
the second level (level 2) vector structure. Each entry in the
Level 2 vector corresponds to a particular hash table index
and keeps track of (by pointing to) all the collided k-mer’s
information pertaining to that particular hash table index.
Finally, the level 3 vector, which is pointed to from a second
level vector entry, keeps the record of all collided k-mers for a
particular hash table index.

2.2.3. Size of the Quotient Value. In order to represent the
hash value of a k-mer, HaVec requires 2k bits. Since we have
33 bits to store a quotient value, we need to ensure that the
total number of hash indexes, that is, the hash table size, is
at least 2(2k-33). This is because the quotient value is com-
puted by dividing the hash value by the table size. We
illustrate this with the help of an example. Suppose that the
value of k is 32. Then HaVec requires 2k bits, that is, 64 bits
to represent the hash values. Clearly, the maximum possible
hash value would be 264–1. Now, the minimum hash table
size of 264-33 or 231 implies that the maximum quotient value
can be 233–1 requiring 33 bits of storage. Clearly, the mini-
mum hash table size is dependent on the value of k: for
smaller k, it will decrease. For example, if k is 25, then, the
minimum hash table size will be 250-33 or 217.

At this point, a brief discussion on the relation between
the memory requirement and the quotient size is in order.
We illustrate this using another example. Consider the case
when we have 20 bits for the quotient value. Then for

Table 1: HaVec’s usage of 5 bytes.

Information Number of bits

Outgoing neighbours 4

Hash function number 3

Quotient value 33
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k = 32, the minimum hash table size is 244 (264-20). This will
clearly affect the total memory requirement adversely. In fact,
if we reduce the number of quotient bits by one, the mini-
mum table size will be multiplied by two; on the other hand,
increasing it will result in fewer hash table entries. Naturally,
fewer entries in the hash table force more use of the auxiliary
vector structures thereby increasing the running time. As it
turns out, keeping 33 bits for the quotient value makes the
right compromise: the memory requirement and the running
time remain at an acceptable level and we can handle up to
32-mers.

2.2.4. Hash Function Considerations. In our implementation,
the hash values are 64-bit unsigned integers. We need 2k bits
to represent a k-mer and k = 32 Theoretically, the hash value
indices will never collide if the hash table consists of 264

entries. But it is not practical to have a hash table of that size.
So, we consider a much smaller hash table and then use
multiple hash functions in order to reduce the probability
of collision, filling as much space in the hash table as pos-
sible. So, it is mandatory to keep track of which hash
function has been used for which k-mer.

Now, it seems that if we increase the number of hash
functions, we can populate the hash table more efficiently.
But there is a cost for storing the index of the hash function
used for a particular k-mer. Clearly, if we allocate n bits for
storing the hash function’s index, then 2n the number of hash
functions can be used. In our implementation using 5 bytes,
we allocate 33 bits to store the quotient and 4 bits for the next
nucleotide(s). So, we can allocate the remaining 3 bits for the
index value of the hash function. So, we can use up to 23 = 8
different hash functions.

2.3. The Procedure. To understand the whole process, here
we explain how HaVec works with the help of an illustra-
tive example. In this example, we assume that the values
of k and h are 5 and 2, respectively. First, we consider a
read from an input file that can be in FASTA or FASTQ
format. We generate the k-mers from the read and

compute the corresponding hash values for each k-mer.
Now assume that we have GGCAATTGTGTGTCG as a
read sequence from the input file. We will have to work
on 5-mers and use 2 different hash functions. Clearly, we
get the following 5-mers: GGCAA, GCAAT, CAATT,
AATTG, ATTGT, TTGTG, TGTGT, GTGTG, TGTGT,
GTGTC, and TGTCG. Figure 2 illustrates the de Bruijn graph
constructed using the above 5-mers.

For the sake of ease of explanation, let us assume that the
hash table size is 11. Suppose the two hash functions we have
are hash1 and hash2. Due to brevity, we only report the hash
values for each k-mer in Table 2 skipping any detail. Initially,
each entry of the hash table is free; this is indicated by 0-0.
The following format is used to store a k-mer’s information
in a hash table entry: (quotient-which_hash_function-neigh-
bour_info). The information of each 5-mer in our example
is reported in Table 3. Figure 3 illustrates the way we handle
the case of collided 5-mers.

We consider the first 5-mer, namely, GGCAA. As has
been reported in Table 2, forGGCAA, hash1 returns 57. Since
the hash table size is 11, we easily calculate the index to be 2
(57%11). So, the quotient is 5 ((int)(57_11)) and we further
store which_hash_function= 1. Moreover, we need to set
neighbour_info =T because by appending “T” with the suffix
of GGCAA, we get its only neighbour in the de Bruijn graph,
namely, GCAAT (see Figure 2). The same procedure is
repeated for all of the successive 5-mers.

Now, let us focus on the proceedings related to CAATT.
For this 5-mer, hash1 returns 24 generating again an index
value of 24%11= 2, which is already in use (due to GGCAA).
So, we employ hash2 and it returns 36. This results in a differ-
ent index, namely, 3 (36%11= 3). Since this is a free index, we
can safely put the information of CAATT here with 2 as the
value of which_hash_function.

For the next 5-mer, namely,ATTGT, both hash1 and hash2
return already occupied indices. So here, the auxiliary vector
data structure comes to the rescue. For the Level 1 vector, we
use the index generated by hash2, that is, 5. In our example,
we have assumed that the size of the first level vector is 3. So,

Level 1 vector

Level 2 vector

Level 3 vectorIndex

Index Pointer to
vector

Pointer to
vector

Collided hashtable
index

Collided k-mers info
at a hastable index

Hashtable
index

Figure 1: Three levels of vectors used in our approach.
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we calculate 2 (5%3) to be the index for the first level vector.
Recall that, since more than one hash table indices can point
to the same index in the vector structure, HaVec maintains
a list of entries for these different hash table indices. For this
case, we create a new entry 5 at index 2 of the auxiliary
vector data structure. All the collided k-mers for this index
(i.e., the hash table index 5) will be stored in a separate 3rd
level vector, which is pointed to from here. In particular,
here we store the information (2–2–G) corresponding to
the k-mer ATTGT at the 3rd level vector. The readers are
kindly referred to Figure 3 for better understanding.

The handling of TTGTG is identical to that of GGCAA.
TGTGT is handled in the same way as ATTGT. Both hash1
and hash2 return already occupied indices. hash2 returns 8.
We divide it by the vector size (3) to get 2 as the remainder.
Hence, a new entry 8 is created at index 2 of the level 1 vector.
Clearly, all the collided k-mers for index 8 will now be stored

GCAAT
CAATT

AATTG

ATTGT

GGCAA

TGTCG

GTGTC

GTGTG

TGTGT

TTGTG

Figure 2: The de Bruijn graph for the k-mers. Nodes are GGCAA, GCAAT, CAATT, AATTG, ATTGT, TTGTG, TGTGT, GTGTG, TGTGT,
and GTGTC.

Table 2: Reads are broken into k-mers. All k-mer’s hash values are
shown here.

k-mers Hash values Comments

GGCAA 57

GCAAT 27

CAATT 24, 36

AATTG 52

ATTGT 36, 27 Put in vector

TTGTG 22

TGTGT 34, 30 Put in vector

GTGTG 49, 47 Put in vector

TGTGT 34, 30 Found in vector; update

GTGTC 38, 25 Put in vector

TGTCG 56

Table 3: Hash table information. We have a total of 11 indices. At
each index, the corresponding k-mer’s quotient, hash function,
and its neighbour information are saved.

Index Information

0 2–1–T

1 5–1

2 5–1–T

3 3–2–G

4 0–0

5 2–1–T

6 0–0

7 0–0

8 4–1–T

9 0–0

10 0–0

3

0

1

2
5 8

2-2-G

2-2-G

4-2-C

2-2-4

Figure 3: Auxiliary vector data structures. All collided k-mers’
information of the hash table index 3 can be found at vector index
0, and all collided k-mers’ information of hash table index 5 and
index 8 can be found at vector index 2.
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in the 3rd level vector which is pointed to from here. Hence,
we store (2–2–G).

The next k-mer, GTGTG is handled the same way as
ATTGT and TGTGT. At this point again, we are faced with
TGTGT. As it is already stored in our auxiliary vector struc-
ture, we simply need to update the neighbour’s information.
We simply add C as its next neighbour.

The last k-mer is TGTCG. For this one, hash1 returns 56,
and we get 56%11=1 as the index in the hash table, which is a
free index. Hence, we put this 5-mer related information
there easily.

2.4. Cutoff Value and a 6-Byte Structure. In genome assem-
bly, cutoff value is a threshold to determine the validity of a
k-mer. In particular, a genome assembler will ignore a k-
mer if it appears less frequently than the preset cutoff value.

Notably, the issue of a cutoff value has become less signif-
icant in recent times than it was before few years ago. This is
because of the rapid advancement of the technologies in the
sequencing laboratories that are now able to produce very
high-quality reads much accurately. This motivated us not
to keep provisions for a cutoff value in our original design.
However, HaVec can easily accommodate cutoff values

for which HashFunc ← 0 to LastHashFunc do
hashedKhmer ← Hasher(whichHashFunc, rawKmerString)
index ← hashedKhmer%blockSize
quotient ← khmerhhashedKhmer÷ blockSize
if no neighbor is found in memBlock[index] then
put the quotient into memBlock[index]
put whichHashFunc into memBlock[index]
put nextNeucleotide into memBlock[index]

else if neighbor(s) found in memBlock[index] and hashvalue matched then
put nextNeucleotide into memBlock[index]

else if whichHashF unc= LastHashF unc and neighbor(s) found in memBlock[index]
and hashvalue does not match then
firstLevelVectorIndex ← index%mapPointer5Byte.size
create tempVect with tempVect.indexVal ← index
add tempVect to mapPointer5Byte[firstLevelVectorIndex]
create a tempkmerInfo and put nextNeucleotide in it
isFound ← false
if mapPointer5Byte[firstLevelVectorIndex] [secondLevelVectorIndex].vect
has already this kmer then

update nextNeucleotide
isFound ← true

end if
if isFound= false then

put quotient, whichHashFunc in tempkmerInfo
add the newly updated tempkmerInfo to mapPointer5Byte[firstLevelVectorIndex]
[secondLevelVectorIndex].vect

end if
else
continue

end if
end for

Algorithm 1: Formal steps of the algorithm.

Table 4: Description of datasets.

Serial number File name File size in MB

1 50m.fa 030.42

2 Ecoli_MG1655_s_6_1_bfast.fasta 242.19

3 Ecoli_MG1655_s_6_2_bfast.fasta 1718.37

4 Human1_95G_CASAVA1.8a2_NCBI37_18Jan11_chr21.sorted.fasta 1599.86

5 Human1_95G_CASAVA1.8a2_NCBI37_18Jan_chr19.sorted.fasta 2393.17

6 NA19240_GAIIx_100_chr21.fasta 1854.83

7 dataset_1_7GB.fa 1677.57

8 dataset_1_9GB.fa 1944.92
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simply by using an additional byte. This allows us to support
cutoff values between 1 and 255. When we process the input
file, we can easily update the count information of a k-mer
while updating its neighbour information. Subsequently,
during the assembly process, the count can be easily com-
pared with the preset cutoff value to decide on the validity
of a k-mer. In HaVec implementation, we have parameter-
ized the cutoff calculation. In the usual case, HaVec uses 5
bytes to store the k-mer information as opposed to 6 bytes
in the implementation with provisions for cutoff values.
This results in lower memory consumption as well as
lower running time. In the rest of this paper, these two
different implementations are referred to as the 5-byte and
6-byte implementations.

3. Results

To evaluate the performance of HaVec, we have conducted
extensive experiments. We have run our experiments on
a server with an Intel® Xeon® CPU E5-4617 @ 2.90GHz
having 12 cores with a total RAM of 64GB. Note that the
scope of this research was to implement HaVec as a single
thread, and hence we have used only one core of the server
for our experiments. We do plan to release a multithreaded
version of HaVec in the near future.

Table 4 briefly describes the datasets we have used in our
experiments. Notably, the datasets listed in Serial numbers 1,
2, and 3 in Table 4 have also been used by [7] in their
experiments. All the data files in FASTA format can be
downloaded from the following link: https://drive.google.
com/drive/folders/0B3D-hZtRZ933SzgyVzc5Z2hUVkE?usp=
sharing. Note that the illumina datasets (i.e., Serial numbers 2
to 4) are available in the BAM format. Therefore, BamTools
(https://github.com/pezmaster31/bamtools) has been used to
convert these files to FASTA format.

We first have designed an experiment with a goal to
understand and analyze the relation among different param-
eters of HaVec. This experiment is done on the input file
50m.fa assuming k = 27 It may be noted here that [8] also
considered k = 27 in their experiments. The results have been
presented in Figures 4, 5, 6, and 7. In Figure 4, the relation
between the number of k-mers in the hash table and in the
vector data structure has been manifested. In particular,
Figure 4 reports a total of 19 cases where case i + 1 assumes
its hash table size to be 5% higher than that of case
i 1 ≤ i ≤ 18 . From Figure 4, we notice a certainly desirable
property of HaVec: an increase in the hash table size and a
decrease (increase) in the number of k-mers in the vector
structure (hash table). Notably, the same relation holds for
both 5-byte and 6-byte implementations of HaVec and that
too with the exact same values.

Next, we investigate the relation between the number of
k-mers in the vector and the total memory. The results are
depicted in Figure 5. As is evident from the figure, with the
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increase of k-mers in the vector structure, the total memory
also increases. Also, as is evident from the difference between
the two curves, the difference in memory requirements
between the 5-byte and 6-byte implementations always
remains constant.

Figure 6 shows the curve for hash table size versus total
memory, which sheds some light on how total memory
changes with the increasing hash table size. As can be seen,
larger hash table size does not always guarantee lower total
memory consumption. Our experiments suggest that opti-
mum memory use is achieved with a hash table size that is
1.25 to 1.5 times the number of unique k-mers.

Finally, the curve in Figure 7 is for hash table size
versus runtime. As can be seen from the figure, the run-
time decreases with the increase in the hash table size. A
final observation is that the running time for the 5-byte
implementation is slightly lower than that of the 6-byte
implementation.

We have further conducted extensive experiments con-
sidering all the files listed in Table 4. We have conducted
these experiments for two different values of k, namely, 27
and 32. The results are presented in Table 5, where the hash
table size, running time, total memory usage, total unique
k-mers in the input file, and the number of k-mers in the
hash table and in the vector data structures are reported.
We have considered both 5-byte and 6-byte implementations
of HaVec while reporting the total memory usage and the
running time.

3.1. Comparison. We have conducted a number of experi-
ments to compare the performance of HaVec with the state

of the art methods. In particular, we have compared
HaVec with Velvet [10] and minia [8]. We have used
the file 50m.fa for this comparison. The dataset in
50m.fa is a soil metagenomics dataset. This MSB2soil dataset
is available as SRA accession SRA050710.1. During our
experiments, Velvet could not complete the processing of this
file even after two hours of running even with 64GB of RAM
as the total memory got exhausted just after two hours.
On the other hand, for minia, we have found that the
running time is dependent on the free hard disk space.
In particular, for minia, the free hard disk space has been
found to be inversely proportional to the running time. We
have used the following command to run minia: ./minia
50m.fa 27 1 4500000000 output.

This command runs minia for k = 27 with a cutoff value
of 1. With this command, the k-mer generation stage in
minia has taken approximately 9.8 hours using a total of
59.5GB of hard disk space. On the contrary, HaVec takes
only 35.3minutes using only 17.1GB of RAM to produce
k-mers along with their neighbour information which are
completely error-free.

It should be mentioned here that in our experiments,
minia has produced approximately 5% less unique k-mers
than HaVec. Also, this percentage increases with the
increase in the cutoff value. In genome assembly, gener-
ally, more unique k-mers are desirable as they produce
longer output contig. The runtime of HaVec is independent
of any nonzero cutoff value, and HaVec in fact runs faster
with no cutoff value.

For minia, we have run the experiments for both values of
k, that is, 27 and 32. The results are reported in Table 6. On
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the other hand, Velvet was run only for 27 (i.e., k = 27) and
the results are reported in Table 7. For both of these experi-
ments, consumed memory and runtime are reported in the
corresponding tables. We have only considered Velvet [10]
and minia [8] because they are reported to have performed
better than other genome assemblers like SPAdes [11] and
ABySS [4]. Notably, our method is not comparable with the
Jellyfish algorithm [12] as it is a multithreaded approach
and only counts the occurrences of k-mers.

3.2. Statistical Tests. We have conducted t-test to check
whether the performance of HaVec over minia is statistically
significant. The results are reported in Table 8. Here, we have
documented 14 test runs, two for each data set. For t-test, the
degree of freedom is defined as the number of sample− 1
which is 14 − 1 = 13 in this case. So, the degree of freedom
is equal to 13 (df = 13). In bioinformatics, 95% confidence
interval is used normally. To be stated as significant in terms
of t-test, the t-value must be greater than 2.16 for df = 13,
CI = 95%. As can be seen from Table 8, the improvements
achieved are clearly statistically significant.

4. Discussion

In this paper, we have presented HaVec, which is a simple and
efficient approach to store a de Bruijn graph for genome
assembly. HaVec uses hash table along with an auxiliary vector
data structure to store k-mers and their neighbouring infor-
mation. One of the startling feature of HaVec is that it is
completely error free as it does not generate any false positives.

HaVec can also support the concept of cutoff values by
storing the count information of each k-mer. This count
information can be compared to a preset cutoff value to filter
k-mers at a later stage.

Any operation involving a k-mer in HaVec (i.e., insert,
search, update, and remove) can be done by virtually in con-
stant time as discussed below. Each of these operations has
the same time complexity of O n +m when applied on the
auxiliary vector structure, where n andm refer to the number
of collided hash table indices at a vector structure index and
the number of collided k-mers at a hash table index, respec-
tively. Clearly, the value of n is very small, because most of
the k-mers are stored in the hash table. In fact, in our

Table 7: Results for Velvet.

File name
Disk

space (GB)
RAM space

Run time
(seconds)

Number of
k-mers

50m.fa 6.6 64,675,804KB 83,900 50,000,000+

Ecoli_MG1655_s_6_1_bfast.fasta 1.9 751,460KB 53 2,003,258

Ecoli_MG1655_s_6_2_bfast.fasta 13 5,884,072 411 14,214,324

Human1_95G_CASAVA1.8a2_NCBI37_18Jan11_chr19.sorted.fasta 7.3 6,591,012 327 17,670,833

Human1_95G_CASAVA1.8a2_NCBI37_18Jan11_chr21.sorted.fasta 5.0 4,107,472 188 11,812,904

NA19240_GAIIx_100_chr21.fasta 7.0 3,714,472KB 246 15,016,990

dataset_1_7GB.fa 5.0 4,108,000KB 187 11,812,904

dataset_1_9GB.fa 7.0 3,714,480KB 242 15,016,990

Table 8: t-test results excluding 50m.fa.

File name
Minia
runtime

HaVec
5-byte
mf = 1.2

HaVec
5-byte
mf = 1.5

HaVec
6-byte
mf = 1.2

HaVec
6-byte
mf = 1.5

Ecoli_MG1655_s_6_1_bfast.fasta 100.00 86.625 0 85.875 70.25

Ecoli_MG1655_s_6_1_bfast.fasta 100.50 86.125 8.75 86.875 69.375

Ecoli_MG1655_s_6_2_bfast.fasta 1801.350 597.5 86.5 601.25 488.50

Ecoli_MG1655_s_6_2_bfast.fasta 1756.00 589.875 476.5 592.75 480.75

Human1_95G_CASAVA1.8a2_NCBI37_18Jan_chr19.sorted.fasta 2236.00 724.25 593.25 722 601.50

Human1_95G_CASAVA1.8a2_NCBI37_18Jan_chr19.sorted.fasta 2071.50 726.25 592.75 738.50 611.625

Human1_95G_CASAVA1.8a2_NCBI37_18Jan11_chr21.sorted.fasta 1087.50 449.5 370.625 444.125 371.50

Human1_95G_CASAVA1.8a2_NCBI37_18Jan11_chr21.sorted.fasta 1124.50 447.875 374.50 450.625 374.75

NA19240_GAIIx_100_chr21.fasta 832.00 621 513.50 623.625 508.625

NA19240_GAIIx_100_chr21.fasta 870.00 619.25 504.625 622.375 525.75

dataset_1_7GB.fa 1078.50 446.5 368.125 450.25 395.25

dataset_1_7GB.fa 1102.00 451.25 367 454.25 373.75

dataset_1_9GB.fa 841.50 619.875 507.125 628.375 516.0

dataset_1_9GB.fa 862.00 626 507.625 624.125 511.375

t-value NA 5.6466 5.1002 4.6367 5.0702

11International Journal of Genomics



experiments, we have always found n ≤ 4. Another important
parameter is the ratio of the number of k-mers in the vector
data structure to the number of k-mers in the hash table.
And in our experiments, the average value of this parameter
has been found to be 1/1000 which is extremely low. So, any
insert or information retrieval can be done virtually in con-
stant time, which makes HaVec a really fast de Bruijn graph
construction and information retrieval process.

Before concluding, we briefly discuss another useful
feature of HaVec. During assembly, the construction of
the de Bruijn graph and the assembly process may need
to be run more than once for different cutoff values. On
the contrary, in the 6-byte implementation of HaVec, we
just keep the count of the number of occurrences of each
k-mer independent of any preset cutoff value. So, HaVec
needs to construct a de Bruijn graph just once as opposed
to multiple times in other methods like Velvet and minia
where independent multiple runs are required for different
cutoff values. More specifically, any graph which is already
constructed using any of these methods for a particular
cutoff value cannot be used for an assembly that requires
a different cutoff value.

5. Conclusion

The major share of the time in the genome assembly process
is taken by the graph construction procedure. In this paper,
we have presented HaVec which can do this in a significantly
shorter time. Another critical feature of HaVec is that it does
not produce any false positive k-mers thereby making the
graph error free. We anticipate that HaVec will be used by
researchers and practitioners alike in bioinformatics and
computational biology. Because parallelization of the de
Bruijn approach has already been attempted in the literature
(e.g., [13]), an immediate avenue for future research would be
to see whether we can parallelize our approach by using
multithreading concepts.

Data Access

All the data files in FASTA format can be downloaded from
the following link: https://drive.google.com/drive/folders/
0B3D-hZtRZ933SzgyVzc5Z2hUVkE?usp=sharing. The im-
plementation of the proposed algorithm is hosted in the fol-
lowing repository: https://github.com/ratulSharker/Havec.
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